
OpenMP for Intranode Programming

Barbara Chapman, University of Houston

Deepak Eachempati, University of Houston

Kelvin Li, IBM

http://www.cs.uh.edu/~hpctools

ATPESC, 08/06/2014

Agenda

 Morning: An Introduction to OpenMP 3.1

 Afternoon: Hybrid Programming with MPI

and OpenMP; Using OpenMP; OpenMP 4.0

 Evening: Practical Programming

2

Agenda

 Hybrid Programming with MPI and OpenMP

 Using OpenMP
 Common programming errors

 Performance Topics

3

Programming Options for “Hybrid”

Architectures
 Pure MPI – each core runs an MPI process

 new MPI-3 support for shared memory makes

MPI+MPI “hybrid” programming a viable option*

 Pure OpenMP

 single process, fully multi-threaded

 virtual distributed shared address space

 MPI and OpenMP

 non-overlapped (“Masteronly”) – only a master thread

makes MPI calls, while no other threads are active

 overlapped - many interesting approaches here

* T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell, W. Gropp, V. Kale, R.

Thakur: MPI + MPI: a new hybrid approach to parallel programming with MPI plus shared

memory. Computing, 95(12):1121– 1136, December 2013.
4

Reasons to Add OpenMP
 OpenMP can be a more efficient solution for intra-node

parallelism
 uses less memory than MPI

 more efficient for fine-grained parallelism

 may require use within NUMA nodes

 Constraint on total number of MPI processes that can be used for
application
 per-node memory limits

 system limits on number of processes that can be spawned

 application doesn’t scale past a certain number of MPI processes

 Application exhibits hierarchical parallelization pattern
 natural to use MPI for top-level, and OpenMP for second level

 Unbalanced MPI workloads – can assign more threads to
heavily-loaded MPI processes

5

Reasons to be Cautious
 Interoperability issues between MPI and

OpenMP implementations
 is MPI library thread-safe?

 how might presence of additional threads impact
MPI’s performance?

 Added complexity in program - beware of shared
memory programming pitfalls such as data races
or false sharing

 If limiting communication to a single thread, are
we still able to saturate the network?

6

NUMA considerations

 NUMA, Non-Uniform Memory Access
 this is a common case for your compute nodes

 Nodes -> (NUMA nodes) Sockets -> Cores -> H/W
Threads

 consideration of process/thread assignment to
cores is critical for performance

0 0 2

1 3

MPI process/master thread

NUMA node 0 NUMA node 1 NUMA node 0 NUMA node 1

NUMA node 2 NUMA node 3 NUMA node 2 NUMA node 3

OpenMP worker threads

7

Resource Utilization Considerations
 Network Utilization

 if only one MPI process per node, can we still

saturate the network port?

 usually yes, but maybe not if multiple network ports

become commonplace in the near future

 Core Utilization

 Threads can help overlap computation with

communication

 Can also help balance workloads through

worksharing constructs

 However: sleeping threads (“Masteronly” mode) will

limit core utilization

8

Hybrid Programming in Practice

 Typically start with an MPI program, and you use
OpenMP to parallelize it
 loop parallelism

 task parallelism

 SIMD and Accelerators (next talk: OpenMP 4.0)

 Strategies
 vary number of threads based on workload in each process

 find best mapping of threads to cores

 use threads to overlap computation with MPI calls for more
asynchronous progress

 generally requires experimentation to find best combination
(e.g. # processes, # threads/process, thread affinity)

9

MPI Thread Support Modes (Recap)

 Request/get thread support mode using call to MPI_Init_thread instead
of MPI_Init

 MPI_THREAD_SINGLE (default with MPI_Init)
 assume MPI process is not multi-threaded

 MPI_THREAD_FUNNELED
 multi-threaded processes allowed

 only one designated thread is making MPI calls

 MPI_THREAD_SERIALIZED
 multi-threaded, and multiple threads may make MPI calls

 calls must be serialized

 MPI_THREAD_MULTIPLE
 multi-threaded, no restrictions

 requires fully thread-safe MPI implementation

10

Example: MPI_THREAD_FUNNELED

#include <mpi.h>

int main(int argc, char **argv)

{

 int rank, size, ierr, i, provided;

 MPI_Init_thread(&argc,&argv,

 MPI_THREAD_FUNNELED,

 &provided);

 ...

 #pragma omp parallel

{

 #pragma omp master

 { ... MPI calls ... }

 #pragma barrier

 #pragma omp for

 for (i = 0; i < N; i++) {

 do_something(i);

 }

 ...

call MPI_Init_thread to request

MPI_THREAD_FUNNELED

now we can do MPI in parallel

region

(NOTE: master construct ensures its

the same thread which does it)

REMEMBER: if using master, we

may also need a barrier

11

Example: MPI_THREAD_SERIALIZED

...

 MPI_Init_thread(&argc,&argv,

 MPI_THREAD_SERIALIZED,

 &provided);

 ...

 #pragma omp parallel

{

 ...

 #pragma omp single

 { ... MPI calls ... }

 #pragma omp for

 for (i = 0; i < N; i++) {

 do_something(i);

 }

 ...

With SERIALIZED, we can now use

a SINGLE construct for more

flexibility.

NOTE: Use nowait clause if you

wish to avoid implicit barrier at the

end and obtain overlap

12

Example: MPI_THREAD_MULTIPLE

...

 MPI_Init_thread(&argc,&argv,

 MPI_THREAD_MULTIPLE,

 &provided);

 ...

 #pragma omp parallel

{

 tid = omp_get_thread_num();

 ...

 if (mpi_rank % 2) {

 MPI_Send(data, N, MPI_INT, mpi_rank-1, tid, ...);

 } else {

 MPI_Recv(data, N, MPI_INT, mpi_rank+1, tid, ...);

 }

 ...

}

With MULTIPLE, no restrictions on

using MPI calls in a parallel region.

13

Hiding Communication Latency using OpenMP

 MPI communication is often blocking

 even non-blocking calls may require MPI calls to

achieve progress

 hardware support and/or helper threads might

help, but often not available

 Strategies using OpenMP

 use an “explicit” SPMD approach

 use nested parallel region

 use tasks

14

Achieving Overlap using a SPMD approach

15

...

 MPI_Init_thread(...);

 ...

 #pragma omp parallel

{

 tid = omp_get_thread_num();

 ...

 if (tid == 0) {

 /* first thread does MPI stuff */

 } else {

 /* remaining threads carry on with independent

 computation */

 }

 #pragma omp barrier

}

Here we divide thread team into two

“subteams” using thread ID.

Main Issue:

- work-sharing constructs in “else”

block are unavailable to us

- requires explicit coding of work-

sharing, cumbersome and

inflexible

Achieving Overlap using Nested Parallelism

16

...

 omp_set_nested(true);

 ...

 #pragma omp parallel num_threads(2)

{

 tid = omp_get_thread_num();

 ...

 if (tid == 0) {

 /* do MPI stuff */

 } else {

 /* thread 1 spawns a new parallel region to do work */

 #pragma omp parallel

 { ... }

 }

 ...

}

nested parallel region here can

perform all work-sharing constructs

independent of the MPI

communication by thread 0

Achieving Overlap using nowait clause

17

...

 MPI_Init_thread(...);

 ...

 #pragma omp parallel

{

 #pragma omp master

 { /* first thread does MPI stuff */ }

 /* remaining threads continue with other work */

 #pragma omp for schedule (...) nowait

 for(...) { ... }

 #pragma omp for schedule(...) nowait

 for(...) { ... }

 ...

}

This approach allows us to utilize all

threads (including, eventually, the

MPI-designated thread(s)) for doing

computation

Achieving Overlap using explicit tasks

18

...

 MPI_Init_thread(...);

 ...

 #pragma omp parallel

{

 ...

 #pragma omp master

 {

 for (...) {

 #pragma omp task

 { /* create tasks for other threads to work on */ }

 }

 /* after task creation, master does MPI stuff*/

 }

 #pragma omp barrier

 ...

}

Here, the master creates tasks

which may be picked up by the

other threads.

Recall: barriers are task scheduling

points.

NPB Multi-Zone Parallel Benchmarks

 Compute discrete solutions of unsteady, compressible Navier-Stoke equations
in 3D

 For each problem, a logically rectangular discretization mesh is divided into a
2D horizontal tiling of 3D zones

 Consists three algorithm benchmarks: LU, SP and BT
 LU (Lower-Upper symmetric Gauss-Seidel)

 SP (Scalar Penta-diagonal)
 BT (Block Tri-diagonal)

19

Assign more

threads to larger

size zones, static

load balancing

BT-MZ and SP-MZ Results

 Class E
 4096 zones (max.

number of MPI processes)
 Platform:

 “Ranger” at TACC, Austin
 3936 blades, each with 4

AMD Opteron “Barcelona”
quad-core chips

 MPI: mvapich
 numactl used for

thread/core affinity

BT-MZ performance with

unbalanced workload

greatly improved

by adding OpenMP

Rolf Rabenseifner, Georg Hager, and Gabriele Jost: Hybrid MPI/OpenMP

Parallel Programming on Clusters of Multi-Core SMP Nodes.

In Didier El Baz et al. (Eds.), (PDP 2009), in Weimar, Germany, Feb. 16-18, 2009,

Computer Society Press, pp. 427-236.
20

http://www.pdp2009.org/

Summary

 Technological trends makes hybrid programming all the more

important

 “fatter” nodes with cc-NUMA characteristics

 reduced memory available per core

 extreme-scale computing will require dynamic, load balancing

strategies

 With OpenMP, you can

 develop more memory-efficient algorithms for within the node

 “workshare” among threads using various scheduling policies, to

curtail load imbalance

 hide communication latency using a variety of strategies

 As always, choose the best programming system for

your problem.

21

Agenda

 Hybrid Programming with MPI and OpenMP

 Using OpenMP
 Common programming errors

 Performance Topics

22

Common Sources of Errors

 Wrong “spelling” of sentinel

 Wrongly declared data attributes (shared vs. private,
firstprivate, etc.)

 Incorrect use of synchronization constructs

 Less likely if user sticks to directives

 Erroneous use of locks can lead to deadlock

 Erroneous use of NOWAIT can lead to race conditions.

 Race conditions (true sharing)

 Can be very hard to find

23

It can be very hard to track race conditions. Tools may help check for these, but

they may fail if your OpenMP code does not rely on directives to distribute work.

Moreover, they can be quite slow.

Care with Synchronization

 Recall that a thread’s temporary view of memory may vary
from shared memory

 Value of shared objects updated at synchronization points

 User must be aware of the point at which modified values are
(guaranteed to be) accessible

 Compilers routinely reorder instructions that implement a
program

 Helps exploit the functional units, keep machine busy

 Compiler cannot move instructions past a barrier

 Also not past a flush on all variables

 But it can move them past a flush on a set of variables so long as
those variables are not accessed

24

Race Condition

 Several threads access and update shared data
concurrently

 One thread writes and one or more threads read or write
same memory location at about the same time

 Outcome depends on relative ordering of operations and
may differ between runs

 User is expected to avoid race conditions

 insert synchronization constructs as appropraite, or

 privatize data

 Some tools exist to detect data races at runtime

 e.g. Intel Thread Checker, Oracle Solaris Studio Thread
Analyzer

25

Global Data – An Example/1

 program global_data

 use mod_global_data

!$omp parallel do private(j)
 do j = 1, n
 call suba(j)
 end do
!$omp end parallel do

module mod_global_data

 implicit none

 integer, parameter:: m= .., n= ..
 integer :: a(m,n), b(m)

end module mod_global_data

Arrays “a”

and “b” are

shared

26

Global Data – An Example/2

subroutine suba(j)

use mod_global_data

do i = 1, m
 b(i) = j
end do

do i = 1, m
 a(i,j) = func_call(b(i))
end do

return
end

Data Race !

27

Global Data - A Data Race!

call suba(1)

Thread 1

call suba(2)

Thread 2

S
h

a
re

d

subroutine suba(j=1)

do i = 1, m
 a(i,1)=func_call(b(i))
end do

do i = 1, m
 b(i) = 1
end do

subroutine suba(j=2)

do i = 1, m
 a(i,2)=func_call(b(i))
end do

do i = 1, m
 b(i) = 2
end do

28

Global Data – A Solution/1

 program global_data

 use mod_global_data

!$omp parallel do private(j)
 do j = 1, n
 call suba(j)
 end do
!$omp end parallel do

module mod_global_data

 implicit none

 integer, parameter:: m= .., n= ..
 integer, parameter:: nthreads = ...
 integer :: a(m,n), b(m,nthreads)

end module mod_global_data

Make array “b”

2-dimensional

29

Global Data – A Solution/2

subroutine suba(j)

use omp_lib
use mod_global_data

TID = omp_get_thread_num()+1
do i = 1, m
 b(i,TID) = j
end do

do i = 1, m
 a(i,j) = func_call(b(i),TID)
end do

return
end

A lot of work and

not very portable

30

Global Data – The Preferred Solution

 program global_data

 use mod_global_data

!$omp parallel do private(j)
 do j = 1, n
 call suba(j)
 end do
!$omp end parallel do

Only add the

“threadprivate” directive to

the module file; no other

changes needed !

module mod_global_data

 implicit none

 integer, parameter:: m= .., n= ..
 integer :: a(m,n), b(m)

 !$omp threadprivate(b)

end module mod_global_data

This solution

also

automatically

adapts to the

number of

threads used

31

Recap: About Global Data

 Global data is shared: take care when using it

 Potential problems if multiple threads access the
same memory simultaneously:
 Read-only data is no problem

 Updates have to be checked for race conditions

 It is your responsibility to deal with this situation

 In general one can do the following:
 Split the global data into a part that is accessed in serial

code only and a part that is accessed in parallel

 Manually create copies of the latter

 Use the thread ID to access these copies

 Alternative: Use OpenMP's threadprivate directive !

32

Agenda

 Hybrid Programming with MPI and OpenMP

 Using OpenMP
 Common programming errors

 Performance Topics

33

General Comments on Performance

 Be aware of overheads of OpenMP constructs,

thread management

 Microbenchmarks help here*

 Don’t create too many parallel regions

 Dynamic loop schedules have much higher overheads
than static schedules

 Synchronization is expensive, so minimize

 use nowait where possible

 privatize data

 minimize code in critical region

 Choose default behavior carefully

 Use appropriate schedules

 Wait policy (OMP_WAIT_POLICY=passive|active)

34

* J. M. Bull and D. O’Neill, A microbenchmark suite for OpenMP 2.0,

SIGARCH Comput. Archit. News, vol. 29, no. 5, pp. 41–48, 2001.

General Comments on Performance

 Thread / Data Affinity

 Check on your implementation’s documentation to control for this
 e.g. KMP_AFFINITY for Intel, GOMP_CPU_AFFINITY for GNU

 Other tools (e.g. taskset, numactl, likwid) can help with this

 OpenMP 4.0 includes features to control for this

 Structure and characteristics of program
 Minimize sequential part of program

 Be aware of and address load balance

 Address cache utilization and false sharing (it can kill any
speedup if not addressed)

 Large parallel regions help reduce overheads, enable better
cache usage and standard optimizations

 Quality of compiler is also a factor on achievable
performance

35

Briefly, on OpenMP Implementations
 Directives implemented via

code modification and
insertion of runtime library
calls
 Typical approach is outlining of

code in parallel region

 Or generation of micro tasks

 Runtime library responsible
for managing threads
 Scheduling loops

 Scheduling tasks

 Implementing synchronization

 Collector API provides interface
to give external tools state
information

 Implementation effort is
reasonable

OpenMP Code Translation

int main(void)

{

int a,b,c;

#pragma omp parallel \

private(c)

do_sth(a,b,c);

return 0;

}

_INT32 main()

{

int a,b,c;

/* microtask */

void __ompregion_main1()

{

_INT32 __mplocal_c;

/*shared variables are kept intact,

substitute accesses to private

variable*/

do_sth(a, b, __mplocal_c);

}

…

/*OpenMP runtime calls */

__ompc_fork(&__ompregion_main1

);

…

}

Each compiler has custom run-time support. Quality of the

runtime system has major impact on performance.

36

OpenMP and Data Locality

 Implicit Data Locality

 Thread fetches data it needs into local cache

 Emphasis on privatizing data where possible, and optimizing

code for cache

 Implicit means of data layout on NUMA systems

 “First touch” as introduced by SGI for Origin

 Emphasis on privatizing data where

possible, and optimizing code for cache

 This can work pretty well

 But small mistakes may be costly

37

Tuning: Critical Regions

 It often helps to chop up large critical sections into
finer, named ones

 Original Code
 #pragma omp critical (foo)

 {

 update(a);

 update(b);

 }

 Transformed Code
 #pragma omp critical (foo_a)

 update(a);

 #pragma omp critical (foo_b)

 update(b);

38

Tuning: Locks Instead of Critical

 Original Code

 #pragma omp critical

 for(i=0; i<n; i++) {

 a[i] = …

 b[i] = …

 c[i] = …

 }

 Idea: cycle through

different parts of the array

using locks!

 Transformed Code

 jstart = omp_get_thread_num();

 for(k = 0; k < nlocks; k++) {

 j = (jstart + k) % nlocks;

 omp_set_lock(lck[j]);

 for(i=lb[j]; i<ub[j]; i++) {

 a[i] = …

 b[i] = …

 c[i] = …

 }

 omp_unset_lock(lck[j]);

 }

 Adapt to your situation

39

Tuning: Eliminate Implicit Barriers

 Worksharing constructs have implicit barrier at end

 If consecutive work-sharing constructs modify (& use) different

objects, the barrier in the middle can be eliminated

 If same object modified (or used), barrier can be safely removed if

iteration spaces guaranteed to align

40

#pragma omp for nowait

for (i = 0; i < N; i++) {

 d[i] = a[i] + b[i]*c[i];

}

#pragma omp for schedule(runtime)

for (i = 0; i < N; i++) {

 e[i] = c[i] + b[i]*a[i];

}

#pragma omp for nowait

for (i = 0; i < N; i++) {

 d[i] = a[i] + b[i]*c[i];

}

#pragma omp for

for (i = 0; i < N; i++) {

 e[i] = d[i] + b[i]*c[i];

}

no barriers needed here

spec guarantees same

iteration-to-thread

mapping

no dependences

between these loops

Cache Coherence and False Sharing

 Blocks of data are fetched into cache lines

 What happens if multiple threads access different data,

but on same cache line, at same time?

41

core1 core2 core3 coreN

Shared memory

cache1 cache2 cache3 cacheN

...

Updates to Shared Data

 Blocks of data are transferred to cache lines

 When an element of cache line is updated, the entire line is

invalidated: local copies are reloaded from main memory

42

core1 core2 core3 coreN

Shared memory

cache1 cache2 cache3 cacheN

a

a[2]

a

a[1], but also a[0]

and a[2]

a[0], but

also a[1]

and a[2]

...

Small “Mistakes”, Big Consequences

 GenIDLEST

 Scientific simulation code

 Solves incompressible Navier
Stokes and energy equations

 MPI and OpenMP versions

 Platform

 SGI Altix 3700 (NUMA)

 512 Itanium 2 Processors

 OpenMP code slower than MPI

OpenMP version

MPI version

In the OpenMP version, a single procedure is responsible for 20% of

the total time and is 9 times slower than the MPI version . Its loops are up
to 27 times slower in OpenMP than MPI.

43

A Solution: Privatization
• Lower and upper bounds of arrays used

privately by threads are shared, stored in

same memory page and cache line

•Here, they have been privatized to eliminate

false sharing issue

•The privatization improved the performance of

the whole program by 30% and led to a 10x

speedup for the procedure.

OpenMP Optimized Version

44

False Sharing: Monitoring Results

 Phoenix codes ported from Pthreads to OpenMP

 5 out of 8 apps show symptoms of false sharing

Program name 1-thread 2-threads 4-threads 8-threads

histogram 13 7,820,000 16,532,800 5,959,190

kmeans 383 28,590 47,541 54,345

linear_regression 9 417,225,000 254,442,000 154,970,000

matrix_multiply 31,139 31,152 84,227 101,094

pca 44,517 46,757 80,373 122,288

reverse_index 4,284 89,466 217,884 590,013

string_match 82 82,503,000 73,178,800 221,882,000

word_count 4,877 6,531,793 18,071,086 68,801,742

Cache Invalidation Count

45

False Sharing: Data Analysis Results

 Determining the variables that cause misses

Program

Name

Global/static data Dynamic data

histogram - main_221

linear_regression - main_155

reverse_index use_len main_519

string_match key2_final string_match_map_266

word_count length, use_len,

words

-

46

Runtime False Sharing Detection

0

2

4

6

8

S
p

e
e
d

u
p

1-thread 2-threads

4-threads 8-threads

0

2

4

6

8

S
p

e
e
d

u
p

1-thread 2-threads

4-threads 8-threads

Original Version Optimized Version

B. Wicaksono, M. Tolubaeva and B. Chapman. “Detecting false sharing in OpenMP
applications using the DARWIN framework”, LCPC 2011 47

Summary

 OpenMP is designed to be easy to use, but

there are several pitfalls to avoid

 Data races are a common programming error in

shared memory programming which can be hard to

spot – know when to privatize your data!

 Beware of subtle synchronization error

 unless you’re very careful, stick to OpenMP directives

 Know the overheards associated with the

constructs you’re using

 Know how to control thread and data placement

 False sharing can also kill performance

48

